The correct option is B 7−√10−3√3,7+√10−3√3
cos(x+π3)=12cosx−√32sinx
∴y=(3−√32)sinx+12cosx+7 If 3−√32=rcosα and 12=rsinα then y=rsin(x+α)+7 Range of sin(x+α) is-1 to 1.∴ y=−r+7,r+7 where r2=(3−√32)2+14 or r2=9+34+14−3√3=10−3√3 or r=√10−3√3
∴ Range is 7−√10−3√3,7+√10−3√3