The correct option is D [1,2]
y=log2⎧⎪
⎪⎨⎪
⎪⎩√2sin(x−π4)+3√2√2⎫⎪
⎪⎬⎪
⎪⎭ or y=log2{sin(x−π4)+3} ...(1)Now −1≤sin(x−π4)<1∀xϵR
∴3−1≤3+sin(x−π4)<4∀xϵR Hence domain is R.For range we have 2y=sin(x−π4)+3 by(1) or 2y−3=sin(x−π4) or −1≤2y−3≤1 as −1≤sinθ≤1 or 2≤2y≤4 or 21≤2y≤22
∴1≤y≤2 Hence range is [1, 2].