The correct options are
A y=+x+√a2−b2
B y=−x−√a2−b2
Tangent to x2a2−y2b2=1 is
y=m1x±√(a2m21−b2) ...(1)
The other hyperbola is x2(−b2)−y2(−a2)=1
Any tangent to it is y=m2x±√(−b2)m22−(−a2)
If (1) and (2) are same, then
m1=m2 and a2m21−b2=−b2m22+a2
or a2m21−b2=a2−b2m21
or (a2+b2)m21=a2+b2
∴m21=1∴m1=±1
Hence the common tangents are y=±x±√a2−b2