Given, f(x)=2x+cot−1x−log(x+√(1+x2))
For function to be monotical,it should be either increasing or decreasing.
For function to be increasing,f′(x)>0
⇒f′(x)=2−1(1+x2)1√(1+x2)>0 for all x ϵ R,except x=0.
∴ The given function is monotically increasing for all x ϵ R-{0}