Determine the intervals of monotonicity of the function f(x)=∣∣
∣
∣∣x+a2abacabx+b2bcacbax+c2∣∣
∣
∣∣
A
xϵ(−∞,l)∪(0,∞),l=−53∑a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
xϵ(−∞,l)∪(0,∞),l=−43∑a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
xϵ(−∞,l)∪(0,∞),l=−13∑a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
xϵ(−∞,l)∪(0,∞),l=−23∑a2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dxϵ(−∞,l)∪(0,∞),l=−23∑a2 By rule for differentiation of determinants f′(x)=∣∣
∣
∣∣100abx+b2bcacbx+c2∣∣
∣
∣∣+∣∣
∣
∣∣x+a2abac010acbcx+c2∣∣
∣
∣∣+∣∣
∣
∣∣x+a2abacabx+b2bc001∣∣
∣
∣∣
or f′(x)=[(x+b2)(x+c2)−b2c2]+[(x+a2)(x+c2−a2c2)]+[(x2+a2)(x2+b2−a2b2)]
or f′(x)=3x2+2x(a2+b2+c2) or f(x)=3x(x+23∑a2)=3[x−(−23∑a2)][x−0] =3[x−l][x−0],l=−23∑a2
for F(x) is decreasing. f′(x)<0⇒xϵ(l,0) and for f(x) is increasing.
f′(x)=+ive when either x<lorx>0 ∴xϵ(−∞,l)orxϵ(0,∞) ∴f(x) is increasing when xϵ(−∞,l)∪(0,∞),