The correct option is A log(√2+1)
Given f(x)=y=log(secx) on [0,π4]
The arc length is given by L=∫ba√(f′(x))2+1dx
We have f(x)=log(secx)
⇒f′(x)=1secx(secxtanx)=tanx
∴L=∫π/40√(tanx)2+1dx
=∫π/40√tan2x+1dx
=∫π/40√sec2xdx (∵sec2x−tan2x=1)
=∫π/40secxdx
=[log(tanx+secx)]π/40
=[log(tan(π/4)+sec(π/4))]−[log(tan0+sec0)]
=[log(1+√2)]−[log(1)]
=log(1+√2)
∴L=log(√2+1)