We know that if z is real, then z=¯¯¯z
If z2z−1 is real then z2z−1=¯¯¯z2¯¯¯z−1
Cross multiplying, we get
(z−¯¯¯z){z¯¯¯z−(z+¯¯¯z)}=0
∴z−¯¯¯z=0 or z=¯¯¯z or z is real ∴y=0
or z¯¯¯z−(z+¯¯¯z)=0 or x2+y2−2x=0
Hence the locus is either y=0 i.e. x−axis or a circle x2+y2−2x=0
Note : You may do it by Cartesian method and put imaginary part equal to zero.
∴y(x2+y2−2x)=0.