Determine the points in
(i) xy-plane
(ii) yz-plane and
(iii) zx-plane which are equidistant from the points A(1,-1,0), B(2, 1, 2) and C(3, 2, -1)
Let the point on xy-plane be P(x, y, 0) Now P is equidistance from A(1, -1, 0), B(2, 1, 2) and C(3, 2, -1) So, AP = BP = CP
Now,
(AP)2=(x−1)2+(y+1)2+(0−0)2
(BP)2=(x−2)2+(y−1)2+(0−2)2
(CP)2=(x−3)2+(y−2)2+(0+1)2
(AP)2=(BP)2⇒(x−1)2+(y+1)2
=(x−2)2+(y−1)2+4
⇒x2+1−2+y2+1+2y+z2
=x2+4−4x+y2+1−2y+4
⇒2x+4y=7 ...(i)
(BP)2=(CP)2⇒(x−2)2+(y−1)2
+4=(x−3)2+(y−2)2+1
⇒x2+4−4x+y2+1−2y+z2
+4=x2+9−6x+y2+4−4y+1
⇒2x+2y=5 ...(ii)
(AP)2=(CP)2⇒(x−1)2+(y+1)2
=(x−3)2+(y−2)2+1
⇒x2+1
−2x+y2+1+2y=x2
+9−6x+y2+4−4y+1
⇒4x+6y=12 ...(iii)
Solving equation (i) and (ii) we get
y = 1, x = 32
Put x and y in equation (iii)
432 + 6(1) = 12
12 = 12
So, the required point is 32,1,0
Let Q (0, y, z) be the required point,
So,
(AQ)2=(BQ)2⇒(0−1)2+(y+1)2
+(z−0)2=(0−2)+(y−1)2+(z−2)2
⇒1+y2+1+2y+z2=4+y2+1−2y+z2+4−42
⇒4y+4z=7
(BQ)2=(CQ)2⇒(0−z2)+(y−1)2+(z−2)2=(0−3)2+(y−2)2+(2+1)2
⇒4+y2+1−2y+z2+4−4z=9+y2+4−4y+z2+1+2z
⇒2y−6z=5 ...(ii)
(AQ)2=(CQ)2⇒(0−1)2+(y+1)2+(z−0)2=(0−3)2+(y−2)2+(z+1)2
⇒1+y2+2y+1+z2=9+y2−4y+4+z2+1+2z
⇒6y−2z=12 ...(iii)
Solving equation (i) and (ii), we get
z=−316 and y = 3116
Put the value of y and z is equation(iii)
6y−2z=12=12
6(3116)−2(−316)=12
18616+616=12
19216=12
12=12
LHS=RHS
So,
y=3116,z=1316
Required point=(0,3116,−316)
(iii) Let R (x, 0, z) be the required point.
So
(AR)2=(BR)2⇒(1−x)2+(−1−0)2+(0−z)2=(2−x)+(1−0)2+(2−z)2
⇒1+x2−2x+1+z2=4+x2−4x+1+4+z2−4z
⇒2x+4z=7 ...(1)
(BR)2=(CR)2⇒(z−z)2+(1−0)2+(2−z)2=(3−x)2+(2−0)2+(−1−z)2
⇒4+x2−4x+4+z2−4z=9+x2−6x+4+1+z2+2z
⇒2x−6z=5 ...(2)
(AR)2=(CR)2⇒(1−x)2+(1−0)2+(0−z)2=(3−x)2+(2−0)2+(−1−z)2
⇒1+x2−2x+1+z2=9+6x+4+1+z2+2z
⇒4x−2z=12 ...(3)
Solving equation (1) and (2), we get
z=15,x=3110
Put the value of x and z is equation(3)
4x−2z=12
Put the value of x and z is equation(3)
4x−2z=12
4(3110)−2(15)=12
12410−210=12
12010=12
=12=12
LHS = RHS
So,
x=3110,z=15
Required point=(3110,0,15)