Determine the product ⎡⎢⎣−444−7135−3−1⎤⎥⎦⎡⎢⎣1−111−22213⎤⎥⎦ and use it to solve system of equations x−y+z=4,x−2y−2z=9,2x+y+3z=1
Let A=⎡⎢⎣−444−7135−3−1⎤⎥⎦, B=⎡⎢⎣1−111−22213⎤⎥⎦ ∴ AB=⎡⎢⎣−444−7135−3−1⎤⎥⎦⎡⎢⎣1−111−22213⎤⎥⎦=⎡⎢⎣800080008⎤⎥⎦
⇒AB=8I....(i)
Consider the given systems of eqautions: x−y+z=4,x−2y−2z=9,2x+y+3z=1
These equations can be expressed as :BX=D where B=⎡⎢⎣1−111−2−2213⎤⎥⎦,X=⎡⎢⎣xyz⎤⎥⎦,C=⎡⎢⎣491⎤⎥⎦
Therefore,X=B−1C=12AC [By (i),AB=8I⇒(18A)B=I ∴B−1=18A]
X=12⎡⎢⎣−444−7135−3−1⎤⎥⎦⎡⎢⎣491⎤⎥⎦⇒⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣3−21⎤⎥⎦ ∴ by equality of matrices::x=3,y=−2,z=−1