Given product say
AB=⎡⎢⎣−444−7135−3−1⎤⎥⎦⎡⎢⎣1−111−2−2213⎤⎥⎦ =⎡⎢⎣−4+4+84−8+4−4−8+12−7+1+67−2+3−7−2+95−3−2−5+6−15+6−3⎤⎥⎦ =⎡⎢⎣800080008⎤⎥⎦ =8I3
Now, AB = 8I3⇒ABB−1=8B−1⇒18A=B−1
Given system of equations are :
x−y+z=4,x−2y−2z=9 and 2x+y+3z=1
Their matrix form is : BX=C
⇒X=B−1C=(18A)C=18⎡⎢⎣−444−7135−3−1⎤⎥⎦⎡⎢⎣491⎤⎥⎦=18⎡⎢⎣−16+36+4−28+9+320−27−1⎤⎥⎦=18⎡⎢⎣24−16−8⎤⎥⎦X=⎡⎢⎣3−2−1⎤⎥⎦
Hence, x=3 ,y=−2 and z=−1