The correct option is C (1,73]
Let y = f(x)=x2+x+2x2+x+1,xϵR
∴y=x2+x+2x2+x+1
y=1+1x2+x+1 [i.e. y>1] ....(i)
⇒yx2+yx+y=x2+x+2
⇒x2(y−1)+x(y−1)+(y−2)=0,∀xϵR
Since, x is real, D≥0
⇒(y−1)2−4(y−1)(y−2)≥0⇒(y−1){(y−1)−4(y−2)}≥0⇒(y−1)(−3y+7)≥0⇒1≤y≤73 ....(iii)
From Eqs. (i) and (ii), Rangeϵ(1,73]