Using the section formula, if a point (x,y) divides the line joining the points (x1,y1) and (x2,y2) in the ratio m:n, then
(x,y)=(mx2+nx1m+n,my2+ny1m+n)
Given the points A(−4,3) and B(2,−4)
let P(a,−2) divides the join of A(−4,3)≡(x1,y1)and B(2,8)≡(x2,y2) in the ratio K:1
⇒P(mx2+nx1m+n,my2+ny1m+n)=P(2K−4K+1,−4K+3K+1)
∴2K−4K+1=a,−4K+3K+1=−2
−4K+3=−2(K+1)
⇒−4K+3=−2K−2
⇒−2K=−5
∴K=52
Hence the ration of divison is 5:2
∴a=2K−4K+1=2×52−452+1=(5−4)25+2=27
∴ value of a=27