Determine the smallest positive value of x (in degrees) for which tan (x+100∘)=tan(x+50∘)tan x tan (x−50∘).
Prove that cos 7x−cos 8x1+2 cos 5x=cos 2x−cos 3x
We have,
tan (x+100∘)=tan(x+50∘)tan x tan (x−50∘)
⇒ tan (x+100∘)tan (x−50∘)=tan(x+50∘)tan x
⇒ sin (x+100∘)cos(x−50∘)cos(x+100∘)sin(x−50∘)=sin(x+50∘)sin xcos(x+50∘)cos x
Applying componendo and dividendo, we get
sin(x+100∘)cos(x−50∘)+cos(x+100∘)sin(x−50∘)sin(x+100∘)cos(x−50∘)−cos(x+100∘)sin(x−50∘)
=sin(x+50∘)sin x+cos(x+50∘)cos xsin(x+50∘)sin x−cos(x+50∘)cos x
⇒ sin(x+100∘+x−50∘)sin(x+100∘−x+50∘)=cos(x+50∘−x)−cos(x+50∘+x)
∵ sin(A±B)=sin A cos B±cos A sin B
and cos(A±B)=cos A cos B∓sin A sin B
⇒ ssin (2x+50∘)sin 150∘=cos 50∘−cos (2x+50∘)
⇒ sin(2x+50∘) cos (2x+50∘)=−sin 150∘ cos 50∘
⇒ 2 sin (2x+50∘)cos (2x+50∘)=−2×12 cos 50∘
[∵ sin 150∘=12]
⇒ sin (4x+100∘)=−cos 50∘
[∵ 2 sin A cos A=sin 2A]
⇒ sin(4x+100∘)=sin(270∘−50∘)
⇒ 4x+100∘=270∘−50∘
⇒ 4x=270∘−50∘−100∘, 4x=270∘−150∘
⇒ 4x=120∘
⇒ x=30∘
II part-
We have, LHS=cos 7x−cos 8x1+2 cos 5x
Multiply numerator and denominator by 2 sin5x2, we get
LHS=2 sin5x2 cos 7x−2 sin 5x2 cos 8x2 sin 5x2+4 sin 5x2 cos 5x
=(sin19x2−sin9x2)−(sin 21x2−sin 11x2)2 sin 5x2+2 sin15x2−2 sin 5x2
[∵ 2 sin A cos B = sin (A + B) + sin (A - B)]
=(sin19x2+sin11x2)−(sin9x2+sin21x2)2 ssin 15x2
=2 sin15x2 cos 2x−2 sin 15x2 cos 3x2 sin 15x2
[∵ sin C+sin D=2 sinC+D2 cos C−D2]
=cos2x−cos3x=RHS Hence proved.