The correct option is A 30o
Given tan(x+100o)=tan(x+50o)tanxtan(x−50o)
tan(x+100o)tan(x−50o)=tan(x+50o)tanx
⇒sin(x+100o)cos(x−500)cos(x+100o)sin(x−500)=sin(x+50o)sinxcos(x+50o)cosx
Applying componendo and dividendo , we get
sin(2x+50o)sin1500=−cos50ocos(2x+50o)
sin(2x+50o)cos(2x+50o)=−sin1500cos50o
⇒sin(4x+100o)=−sin400
sin(4x+100o)=sin(−400)
4x+100o=nπ−(−1)n400
Substitute n=1, smallest positive value of x is given by
4x=1200
⇒x=300