(i)
sin6712=sin(90−2212)=cos2212⇒√1+cos2A2=√1+cos452=
⎷1+1√22
⇒√√2+12√2
(ii)cos6712=cos(90−2212)=sin2212
⇒√1−cos2A2=√1−cos452=
⎷1−122
⇒√√2−12√2
(iii) tan8212=tan(1652)=tan(180−15)=−tan15
=−tan(45−30)
=−[tan45−tan301+tan45(tan30)]
=−⎡⎢
⎢
⎢
⎢⎣1−1√31+11√3⎤⎥
⎥
⎥
⎥⎦
⇒−⎡⎢
⎢
⎢
⎢
⎢⎣√3−1√3√3+1√3⎤⎥
⎥
⎥
⎥
⎥⎦=1−√31+√3×(√3−1)(√3−1)
=√3−(√3)2−1+√3(√3)2−12
=2√3−3−13−1=2√3−42
∵tan2θ=2tanθ1−tan2θ
⇒2θ=165
⇒θ=1652
tan(165)=√3−2
⇒tan(165)=2tan(1652)1−tan2(1652)
Let tan1652=x
⇒√3−2=2x1−x2
⇒(1−x2)(√3−2)=2x
⇒(√3−2)−x2(√3−2)=2x
⇒(2−√3)x2−2x+(√3−2)=0
⇒x=−(−2)±√(−2)2−4(2−√3)(√3−2)2(2−√3)
x=2±√4+4(2−√3)(2−√3)2(2−√3)
=2±2√1+(2)2+(√3)2−2×2√3(2−√3)
=1±√1+4+3−4√32−√3
∵tan8412∠90
⇒tan8412
=+ve1stquad
x=1+√8−4√32−√3
=1+2√2−√32−√3×(2+√3)2+√3
=(2+√3)+2√2−√3(2+√3)4−3
=2+√3+2(2+√3)√2−√3
=2+√3+[2(2+√3)(√2−√3)]√2+√3√2+√3
=2+√3+2√2+√3(√(2−√3)(2+√3)
x=2+√3+2√2+√3⟶(1)
⇒x=2+√3+2√2+√3
∴tan(8212)=2+√3+2√2+√3.