Let A=⎡⎢⎣02αγαβ−γα−βγ⎤⎥⎦
∴A′=⎡⎢⎣0αα2ββ−βγ−γγ⎤⎥⎦
But given A is orthogonal
∴AA′=I
⇒⎡⎢⎣02αγαβ−γα−βγ⎤⎥⎦×⎡⎢⎣0αα2ββ−βγ−γγ⎤⎥⎦=⎡⎢⎣100010001⎤⎥⎦
⇒⎡⎢⎣4β2+γ22β2−γ2−2β2+γ22β2−γ2α2+β2+γ2α2−β2−γ2−2β2+γ2α2−β2−γ2α2+β2+γ2⎤⎥⎦=⎡⎢⎣100010001⎤⎥⎦
Equating the corresponding elements, we have
4β2+γ2=1...(1)
2β2−γ2=0...(2)
α2+β2+γ2=1...(3)
From (1) and (2), 6β2=1∴β2=16
and γ2=13
From
(3)α2=1−β2−γ2=1−16−13=12
Hence, α=±1√2, β=±1√6 and γ=±1√3