wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Determine whether the equation of the locus of a point, which moves such that the sum of its distances from two given points (ae,0) and (−ae,0) is equal to 2a, is x2a2+y2b2=1

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
Let two given points are A(ae,0) and B(ae,0)

Let coordinates of required point are C(x,y)

By distance formula,
CA=(xae)2+(y0)2
CA=(xae)2+y2

Similarly, CB=(x(ae))2+(y0)2
CB=(x+ae)2+y2

By given condition,
(xae)2+y2+(x+ae)2+y2=2a
(xae)2+y2=2a(x+ae)2+y2

Squaring both sides, we get,
((xae)2+y2)2=(2a(x+ae)2+y2)2
(xae)2+y2=(2a(x+ae)2+y2)2
x22aex+a2e2+y2=4a24a(x+ae)2+y2+(x+ae)2+y2
x22aex+a2e2+y2=4a24a(x+ae)2+y2+x2+2aex+a2e2+y2
2aex=4a24a(x+ae)2+y2+2aex
4a(x+ae)2+y2=4a2+2aex+2aex
4a(x+ae)2+y2=4a2+4aex
4a(x+ae)2+y2=4a(a+ex)
(x+ae)2+y2=(a+ex)

Squaring both sides, we get,
(x+ae)2+y2=(a+ex)2
x2+2aex+a2e2+y2=a2+2aex+e2x2
x2e2x2+y2=a2a2e2
x2(1e2)+y2=a2(1e2)

Divide both sides by a2(1e2), we get,
x2(1e2)a2(1e2)+y2a2(1e2)=a2(1e2)a2(1e2)
x2a2+y2a2(1e2)=1

Put a2(1e2)=b2
x2a2+y2b2=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ellipse and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon