The correct option is
A True
Let two given points are A(ae,0) and B(−ae,0)
Let coordinates of required point are
C(x,y)
By distance formula,
CA=√(x−ae)2+(y−0)2
∴CA=√(x−ae)2+y2
Similarly, CB=√(x−(−ae))2+(y−0)2
∴CB=√(x+ae)2+y2
By given condition,
√(x−ae)2+y2+√(x+ae)2+y2=2a
∴√(x−ae)2+y2=2a−√(x+ae)2+y2
Squaring both sides, we get,
(√(x−ae)2+y2)2=(2a−√(x+ae)2+y2)2
∴(x−ae)2+y2=(2a−√(x+ae)2+y2)2
∴x2−2aex+a2e2+y2=4a2−4a√(x+ae)2+y2+(x+ae)2+y2
∴x2−2aex+a2e2+y2=4a2−4a√(x+ae)2+y2+x2+2aex+a2e2+y2
∴−2aex=4a2−4a√(x+ae)2+y2+2aex
∴4a√(x+ae)2+y2=4a2+2aex+2aex
∴4a√(x+ae)2+y2=4a2+4aex
∴4a√(x+ae)2+y2=4a(a+ex)
∴√(x+ae)2+y2=(a+ex)
Squaring both sides, we get,
(x+ae)2+y2=(a+ex)2
∴x2+2aex+a2e2+y2=a2+2aex+e2x2
∴x2−e2x2+y2=a2−a2e2
∴x2(1−e2)+y2=a2(1−e2)
Divide both sides by a2(1−e2), we get,
∴x2(1−e2)a2(1−e2)+y2a2(1−e2)=a2(1−e2)a2(1−e2)
∴x2a2+y2a2(1−e2)=1
Put a2(1−e2)=b2
∴x2a2+y2b2=1