Using the distance formula d=√(x2−x1)2+(y2−y1)2, we get
AB2=(2+3)2+(6+4)2=52+102=25+100=125
BC2=(−6,−2)2+(10−6)2=(−8)2+42=64+16=80
CA2=(−6+3)2+(10+4)2=(−3)2+(14)2=9+196=205
i.e., AB2+BC2=125+80=205=CA2
Hence ABC is a right angled triangle since the square of one side is equal to sum of the squares of the other two sides.