S=11.2.3+12.3.4+....+1n(n+1)(n+2)S=∑1n(n+1)(n+2)=∑1n+1(12(1n−1n+2))=12∑(1n(n+1)−1(n+1)(n+2))=12∑[(1n−1n+1)−(1n+1−1n+2)]=12∑[(1−12)−(12−13)+(12−13)−(12−13)+....+(1n−1n+1)−(1n+1−1n+2)]=12[12−1(n+1)(n+2)]=14[1−2(n+1)(n+2)]=14(n2+3n)(n+1)(n+2)S=n(n+3)4(n+1)(n+2)