Sn=11.2.3+12.3.4+...+1n(n+1)(n+2)
=12[3−11.2.3+4−22.3.4+...+n+2−nn(n+1)(n+2)]
=12[11.2−12.3+12.3−13.4+...+1n(n+1)−1(n+1)(n+2)]4
=12[11.2−1(n+1)(n+2)]
=12[(n+1)(n+2)−22(n+1)(n+2)]
=12[n2+3n2(n+1)(n+2)]
=n(n+3)4(n+1)(n+2)
11.2.3+12.3.4+13.4.5+⋯+1n(n+1)(n+2)=n(n+3)4(n+1)(n+2).