12tan−1x=cos−1{1+√1+x22√1+x2}12
R.H.S Let x=tanθθ=tan−1x=cos−1{1+√1+x22√1+x2}12=cos−1{1+secθ2secθ}12=cos−1{1+cosθ2}12=cos−1⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩2cos2θ22⎫⎪ ⎪ ⎪⎬⎪ ⎪ ⎪⎭12=cos−1cosθ2
So, =tan−1x2=L.H.S
Proved
∫x2+1x4+1dx will be equal to which of the following