Step 1: Solving for 23.
23 is solution of mx2+nx+1=0
Therefore,
m×x2+n×x+1=0
⇒m×(23)2+n×23+1=0
⇒m×49+n×23+1=0
⇒4m9+2n3+1=0
⇒4m+2n×3+1×99=0
⇒4m+6n+99=0
⇒4m+6n+9=0 ...(i)
Step 2: Solving for 1.
1 is solution of mx2+nx+1=0
Therefore,
m×x2+n×x+1=0
⇒m×(1)2+n×1+1=0
⇒m+n+1=0 ...(ii)
Step 3: Solving the value of m and n.
4m+6n+9=0 ...(i)
m+n+1=0 ...(ii)
From equation (ii), we get
m=−(n+1)
Putting the value of m in equation (i), we get
4[−(n+1)+6n+9=0
⇒−4n−4+6n+9=0
⇒6n−4n+9−4=0
⇒2n=−5
⇒n=−52=−212
Putting the value of n in equation (ii), we get
m+(−52)+1=0
⇒m=52−1
⇒m=5−22=32=112
Hence.
m=112& n=−212.