The correct option is C 5sin2θ
Consider: 2cot2θ+5tan2θ+7cosec2θ+tan2θ+1−2cos2θ
=2(cosec2θ−1)+5tan2θ+7cosec2θ+tan2θ+1−2cos2θ (∵ 1+cot2θ=cosec2θ)
=2cosec2θ−2+5tan2θ+7cosec2θ+sec2θ−2cos2θ (∵1+tan2θ=sec2θ)
=2cosec2θ+5(1+tan2θ)cosec2θ+sec2θ−2cos2θ
=2cosec2θ+5sec2θcosec2θ+sec2θ−2cos2θ
=2sin2θ+5cos2θ1sin2θ+1cos2θ−2cos2θ
=2cos2θ+5sin2θsin2θ cos2θcos2θ+sin2θcos2θ sin2θ−2cos2θ
=2cos2θ+5sin2θ−2cos2θ (∵ cos2θ+sin2θ=1)
=5sin2θ
Hence, the correct answer is option (c).