Consider the given expression.
2sinθtanθ(1−tanθ)+2sinθsec2θ(1+tanθ)2
⇒2sinθtanθ−2sinθtan2θ+2sinθ(1+tan2θ)(1+tanθ)2[∵sec2x=1+tan2x]
⇒2sinθtanθ−2sinθtan2θ+2sinθ+2sinθtan2θ(1+tanθ)2
⇒2sinθtanθ+2sinθ(1+tanθ)2
⇒2sinθ(1+tanθ)(1+tanθ)2
⇒2sinθ(1+tanθ)
Hence, this is the answer.