The correct option is
A cosαIn △OLC
OL=rcos(α−3θ),CL=rsin(α−3θ)
Gives
sin3θCL=cos3θOL=1⇒sin3θrsin(α−3θ)=cos3θrcos(α−3θ)=1
⇒sin3θsin(α−3θ)=cos3θcos(α−3θ)=r
cos4θ−sin4θ=cosθ(rcos(α−3θ)−sinθ(rsin(α−3θ))
⇒cos2θ=rcos(α−2θ)⇒cos2θ=r(cosαcos2θ+sinαsin2θ)
⇒(1−rcosα)cos2θ=rsinαsin2θ⇒1−rcosαrsinα=tan2θ.....(1)
And
cos3θsinθ+sin3θcosθ=r(cos(α−3θ)sinθ+sin(α−3θ)cosθ)
⇒sinθcosθ=rsin(α−2θ)⇒sin2θ=2r(sinαcos2θ−cosαsin2θ)
⇒(1+2rcosα)sin2θ=2rsinαcos2⇒1+2rcosα2rsinα=cot2θ
From (1) and (2)
1−rcosαrsinα=2rsinα1+2rcosα=tan2θ
⇒1−rcosα+2rcosα−2r2cos2α=2r2sin2α
⇒2r2−1r=cosα