The correct option is
C 2x+1−3(x+1)2+2(x+1)3Let
2x2+x+1(x+1)3=Ax+1+B(x+1)2+C(x+1)3
Then making denominators equal on both sides
2x2+x+1=A(x+1)2+B(x+1)+C
Putting x=-1 we get C=2. Then
A(x+1)2+B(x+1)=2x2+x−1=(x+1)(2x−1)
Dividing both sides by (x+1) and putting x=−1 we get B=−3
Now
A(x+1)+B=2x−1
we have B=−3 and put x=0 above
⇒A−3=0−1
∴A=2