Solve: 3+√33−√3+3−√33+√3+13+√3−13−√3
We have,
(3+√33−√3+3−√33+√3)+(13+√3−13−√3)
[Using cross multiplication method, ab+cd=(a×d)+(b×c)(b×d)]
=(3+√3)(3+√3)+(3−√3)(3−√3)(3−√3)(3+√3)+13+√3−13−√3
=(3+√3)2+(3−√3)2(3−√3)(3+√3)+(3−√3)−(3+√3)(3+√3)(3−√3)
=(3+√3)2+(3−√3)2(3)2−(√3)2+3−√3−3−√3(3)2−(√3)2
[Using the identity, (a+b)2=(a2+b2+2ab),(a−b)2=(a2+b2−2ab),
and (a2−b2)=(a−b)(a+b) ]
=(32+3+6√3)+(32+3−6√3)9−3+−2√39−3
=(12+6√3)+(12−6√3)(9−3)+(−2√3)(9−3)
=246−2√36
=4−√33
=12−√33