(83a×25×22a)(4×211a×2(−2a))
It can be simplified as:
(83a×25×22a)(4×211a×2(−2a))=(2×2×2)3a×25×22a)(2×2)×211a×2(−2a))
=((23)3a×25×22a)(22×211a×2(−2a))
=(29a×25×22a)(22×211a×2(−2a))
On further calculation, we have
=(29a+2a×25)(22×211a−2a)
=(29a+2a+5)(211a−2a+2)
=(211a+5)(29a+2)
[∵ aman=a(m−n) ]
=211a+5−9a−2
=22a+3
Hence, the simplified value is 22a+3 .