wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(a2b2)3+(b2c2)3+(c2a2)3(ab)3+(bc)3+(ca)3=

Open in App
Solution

Given: (a2b2)3+(b2c2)3+(c2a2)3(ab)3+(bc)3+(ca)3

We know that,
If x+y+z=0 then x3+y3+z3=3xyz

Consider, x=a2b2,y=b2c2 and z=c2a2
Since, a2b2+b2c2+c2a2=0,

(a2b2)3+(b2c2)3+(c2a2)3
=3(a2b2)(b2c2)(c2a2)

Also, ab+bc+ca=0
(ab)3+(bc)3+(ca)3
=3(ab)(bc)(ca)

Thus, (a2b2)3+(b2c2)3+(c2a2)3(ab)3+(bc)3+(ca)3
=3(a2b2)(b2c2)(c2a2)3(ab)(bc)(ca)
=3(ab)(a+b)(bc)(b+c)(ca)(c+a)3(ab)(bc)(ca)
=(a+b)(b+c)(c+a)

Hence, (d) is the correct option.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon