Given: (a2−b2)3+(b2−c2)3+(c2−a2)3(a−b)3+(b−c)3+(c−a)3
We know that,
If x+y+z=0 then x3+y3+z3=3xyz
Consider, x=a2−b2,y=b2−c2 and z=c2−a2
Since, a2−b2+b2−c2+c2−a2=0,
∴(a2−b2)3+(b2−c2)3+(c2−a2)3
=3(a2−b2)(b2−c2)(c2−a2)
Also, a−b+b−c+c−a=0
∴(a−b)3+(b−c)3+(c−a)3
=3(a−b)(b−c)(c−a)
Thus, (a2−b2)3+(b2−c2)3+(c2−a2)3(a−b)3+(b−c)3+(c−a)3
=3(a2−b2)(b2−c2)(c2−a2)3(a−b)(b−c)(c−a)
=3(a−b)(a+b)(b−c)(b+c)(c−a)(c+a)3(a−b)(b−c)(c−a)
=(a+b)(b+c)(c+a)
Hence, (d) is the correct option.