The correct option is C (α+β)(α2+β2)
We have,
α32sin2(12tan−1αβ)+β32cos2(12tan−1βα)
=α31−cos(tan−1αβ)+β31+cos(tan−1βα)
=α31−cos(cos−1β√α2+β2)+β31+cos(cos−1α√α2+β2)
=α31−β√α2+β2+β31+α√α2+β2
=√α2+β2[α3√α2+β2−β+β3√α2+β2+α]
=√α2+β2[α3(√α2+β2+β)α2+β2−β2+β3(√α2+β2−α)α2+β2−α2]
=√α2+β2[α(√α2+β2+β)+β(√α2+β2−α)]
=√α2+β2[α(√α2+β2)+β(√α2+β2)]
=(α2+β2)(α+β).