wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

ax+bcx+d
(Differentiate with respect to x, using first principle)


Open in App
Solution

Find derivative by first principle method

Given:f(x)=ax+bcx+d

f(x)=limh0a(x+h)+bc(x+h)+dax+bcx+dh

[f(x)=limh0f(x+h)f(x)h]

Taking LCM and simplify

=limh0[a(x+h)+b](cx+d)(ax+b)[c(x+h)+d]h(cx+d)[c(x+h)+d]

f(x)=limh0(acx2+adx+achx+ahd+bcx+bd)(acx2+achx+adx+bcx+bch+bd)h(cx+d)[c(x+h)+d]


=limh0ahdbchh(cx+d)(c(x+h)+d)

=limh0h(adbc)h(cx+d)(c(x+h)+d)

=limh0(adbc)(cx+d)(c(x+h)+d)

Now, apply the limit, we get

f(x)=adbc(cx+d)2


flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon