ax+bcx+d
(Differentiate with respect to x, using first principle)
Find derivative by first principle method
Given:f(x)=ax+bcx+d
f′(x)=limh→0a(x+h)+bc(x+h)+d−ax+bcx+dh
[f′(x)=limh→0f(x+h)−f(x)h]
Taking LCM and simplify
=limh→0[a(x+h)+b](cx+d)−(ax+b)[c(x+h)+d]h(cx+d)[c(x+h)+d]
f′(x)=limh→0(acx2+adx+achx+ahd+bcx+bd)−(acx2+achx+adx+bcx+bch+bd)h(cx+d)[c(x+h)+d]
=limh→0ahd−bchh(cx+d)(c(x+h)+d)
=limh→0h(ad−bc)h(cx+d)(c(x+h)+d)
=limh→0(ad−bc)(cx+d)(c(x+h)+d)
Now, apply the limit, we get
f′(x)=ad−bc(cx+d)2