Solve:
(1+x)n=c0x0+c1x+c2x2+…=cnxn
On integrating both sides we get,
(1+x)n+1n+1=c0x+c1x22+c2x33+⋯⋅cnxn+1n+1
on Putting x=1 we get,
2n+1n+1=c0+c12+c23+⋯cnn+1
⇒c01+c12+c23+⋯−cnn+1=2n+1n+1