Simplifying the above equation we get
cosA1−tanA+sinA1−cotA
=cosA1−sinAcosA+sinA1−cosAsinA
=cos2AcosA−sinA+sin2AsinA−cosA
=cos2A−sin2AcosA−sinA
=(cosA−sinA)(cosA+sinA)cosA−sinA
=cosA+sinA
Hence answer is B
sin A-cosA+1/sinA+cosA-1=1/secA-tanA