Simplifying the LHS of cosA−sinA+1cosA+sinA−1=cscA+cotA
cosA−sinA+1cosA+sinA−1=sinA(cosA−sinA+1)sinA(cosA+sinA−1)
=sinAcosA−sin2A+sinAsinA(cosA+sinA−1)
=sinAcosA+sinA−(1−cos2A)sinA(cosA+sinA−1)
=sinA(cosA+1)−(1−cosA)(1+cosA)sinA(cosA+sinA−1)
=(1+cosA)(sinA+cosA−1)sinA(cosA+sinA−1)
=1+cosAsinA
=1sinA+cosAsinA
=cscA+cotA
=RHS