The correct option is A −12
y=ddx[cos2cot−1{√1−x1+x}]
Put x=cosθ
⇒y=ddx[cos2cot−1{√1−cosθ1+cosθ}]
⇒y=ddx⎡⎣cos2cot−1⎧⎨⎩√2sin2(θ/2)2cos2(θ/2)⎫⎬⎭⎤⎦
⇒y=ddx[cos2cot−1{tanθ2}]
⇒y=ddx[cos2cot−1{cot(π2−θ2)}]
⇒y=cos2(π2−θ2)
⇒y=sin2θ2=1−cosθ2=1−x2
Hence, the value of the differentiation is
dydx=−12