No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−(d2ydx2)2(dydx)−3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
−(d2ydx2)3(dydx)−3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(d2ydx2)2(dydx)−3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B−(d2ydx2)2(dydx)−3 Let, y=f(x)⇒dydx=f′(x)⇒dxdy=1f′(x)∴ddx(dxdy)=−1[f′(x)]2⋅f′′(x)=−d2ydx2(dydx)2 Now,ddy(dydx)=ddx(dydx)⋅dxdy=d2ydx2⋅1dydx ∴ddx(dxdy)⋅ddy(dydx)=−(d2ydx2)2(dydx)3=−(d2ydx2)2(dydx)−3