wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(1+cotθ+tanθ)(sinθcosθ)sec3θcsc3θ=sin2θcos2θ

Open in App
Solution

LHS=(1+cotθ+tanθ)(sinθcosθ)sec3θcsc3θ
=(1+cosθsinθ+sinθcosθ)(sinθcosθ)1cos3θ1sin3θ
=(1+sin2θ+cos2θsinθcosθ)(sinθcosθ)sin3θcos3θsin3θcos3θ
=(1+1sinθcosθ)(sinθcosθ)sin3θcos3θsin3θcos3θ
=(1+1sinθcosθ)(sinθcosθ)×sin3θcos3θ(sinθcosθ)(sin2θ+cos2θ+sinθcosθ)
=(sinθcosθ+1)sin2θcos2θ(sinθcosθ+1)
=sin2θcos2θ=RHS
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon