The correct option is C tan6θ
a=sin3θ+sin5θ+sin7θ+sin9θcos3θ+cos5θ+cos7θ+cos9θ=(sin3θ+sin9θ)+(sin5θ+sin7θ)(cos3θ+cos9θ)+(cos5θ+cos7θ)
Using identities sinA+sinB=2sin(A+B2)cos(A−B2)&cosA+cosB=2cos(A+B2)cos(A−B2)
⇒a=2sin(3θ+9θ2)cos(3θ−9θ2)+2sin(5θ+7θ2)cos(5θ−7θ2)2cos(3θ+9θ2)cos(3θ−9θ2)+2cos(5θ+7θ2)cos(5θ−7θ2)
⇒a=sin6θcos3θ+sin6θcosθcos6θcos3θ+cos6θcosθ=tan6θ
Ans: C