The correct option is C 32
sin4θ+cos4θ=(sin2θ+cos2θ)2−2sin2θcos2θ
⇒sin4θ+cos4θ=1−2sin2θcos2θ ......(i) [Q sin2θ+cos2θ=1]
Also, sin6θ+cos6θ=(sin2θ)3+(cos2θ)3
=(sin2θ+cos2θ)[(sin2θ)2+(cos2θ)2−sin2θcos2θ]
=1×[(sin2θ+cos2θ)2−3sin2θcos2θ]
=1−3sinθcos2θ
i.e., sin6θ+cos6θ=1−3sin2θcos2θ.....(ii)
∴sin6θ+cos6θ−1sin4θ+cos4θ−1=−3sin2θcos2θ−2sin2θcos2θ=32