1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Trigonometric Ratios of Multiples of an Angle
sin-660∘ tan1...
Question
s
i
n
(
−
660
∘
)
t
a
n
(
1050
∘
)
s
e
c
(
−
420
∘
)
c
o
s
(
225
∘
)
c
o
s
e
c
(
315
∘
)
c
o
s
(
510
∘
)
=
A
√
3
/
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
√
3
/
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
/
√
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
4
/
√
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
2
/
√
3
sin
(
−
660
°
)
tan
(
1050
°
)
sec
(
−
420
°
)
cos
(
225
°
)
c
o
s
e
c
(
315
°
)
cos
(
510
°
)
=
−
sin
(
660
°
)
tan
(
1050
°
)
sec
(
−
420
°
)
cos
(
225
°
)
c
o
s
e
c
(
315
°
)
cos
(
510
°
)
=
−
sin
(
4
×
180
∘
−
60
°
)
tan
(
6
×
180
∘
−
30
°
)
sec
(
2
×
180
∘
+
60
°
)
cos
(
×
180
∘
+
45
°
)
c
o
s
e
c
(
2
×
180
∘
−
45
°
)
cos
(
3
×
180
∘
−
30
°
)
=
−
sin
(
4
π
−
60
°
)
tan
(
6
π
−
30
°
)
sec
(
2
π
+
60
°
)
cos
(
π
+
45
°
)
c
o
s
e
c
(
2
π
−
45
°
)
cos
(
3
π
−
30
°
)
=
sin
60
°
(
−
tan
30
°
)
sec
60
°
−
cos
45
°
(
−
c
o
s
e
c
45
°
)
(
−
cos
30
°
)
=
√
3
2
×
(
−
1
√
3
)
×
2
1
√
2
×
−
√
2
×
−
√
3
2
=
2
√
3
Hence, the answer is
2
√
3
.
Suggest Corrections
0
Similar questions
Q.
Find the value of
s
i
n
(
−
660
0
)
t
a
n
(
1050
0
)
s
e
c
(
−
420
0
)
c
o
s
(
225
0
)
c
o
s
e
c
(
315
0
)
c
o
s
(
510
0
)
Q.
If
P
=
sin
300
∘
⋅
tan
330
∘
⋅
sec
420
∘
tan
135
∘
⋅
sin
210
∘
⋅
sec
315
∘
and
Q
=
sec
480
∘
⋅
cosec
570
∘
⋅
tan
330
∘
sin
600
∘
⋅
cos
660
∘
⋅
cot
405
∘
,
then the value of
P
and
Q
are respectively
Q.
If
sec
A
=
17
8
, verify that
3
-
4
sin
2
A
4
cos
2
A
-
3
=
3
-
tan
2
A
1
-
3
tan
2
A
.