sinθ1−cosθ+tanθ1+cosθ=secθcosecθ+cotθ
LHS =sinθ1−cosθ+tanθ1+cosθ
=sinθ(1+cosθ)+tanθ(1−cosθ)12−cos2θ
=sinθ(1+cosθ)+sinθcosθ(1−cosθ)sin2θ
=sinθ+sinθcosθ+sinθcosθ−sinθsin2θ
=sinθcosθ+sinθcosθsin2θ
=sinθcosθsin2θ+sinθcosθ⋅1sin2θ
=cosθsinθ+1cosθ1sinθ
=cotθ+secθcosecθ
= RHS
∴sinθ1−cosθ+tanθ1+cosθ=secθcosecθ+cotθ
Hence, proved.