wiz-icon
MyQuestionIcon
MyQuestionIcon
1216
You visited us 1216 times! Enjoying our articles? Unlock Full Access!
Question

sinθcosθ+1sinθ+cosθ1=1secθtanθ.

Open in App
Solution

LHS
=sinθcosθ+1sinθ+cosθ1
=sinθcosθ+1sinθ+cosθ1×sinθ+cosθ+1sinθ+cosθ+1
=[(sinθ+1)cosθ][(sinθ+1)+cosθ](sinθ+cosθ)21
=(sinθ+1)2cos2θ(sinθ+cosθ)21
=1+sin2θ+2sinθcos2θsin2θ+2sinθcosθ+cos2θ1
=2sin2θ+2sinθ2sinθcosθ
[sin2A+cos2A=1]
=2sinθ(sinθ+1)2sinθcosθ
=sinθ+1cosθ
=sinθ+1cosθ×(sinθ+1)(sinθ+2)
1sin2θcosθ(1sinθ)
cos2θcos(θ)(1sinθ)
=11sinθcosθ
=secθtanθ
=RHS
So, LHS=RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon