Differential equation, having y=(sin−1x)2+A(cos−1x)+B where A and B are arbitary constants is (p−x2)d2ydx2−xdydx=q; then p+q=
y=(sin−1x)2+A cos−1x+B
y′=2 sin−1x√1−x2−A√1−x2
∴√1−x2y′=2 sin−1x−A
(1−x2)(y′)2=(2 sin−1x−A)2 .....(1)
Now, y=(sin−1x)2+A cos−1x+B
⇒y=(sin−1x)2+A(π2−sin−1x)+B
⇒y=(sin−1x)2−A sin−1x+πA2+B
⇒4y=4(sin−1x)2−4A sin−1x+A2−A2+2πA+4B
⇒(2 sin−1x−A)2=4y+A2−4B−2πA ....(2)
From (1) & (2)
(1−x2)(y′)2=4y+A2−4B−2πA
(1−x2)2y′y′′+(y′)2(−2x2)=4y′
(1−x2)y′′−xy′=2
∴p=1;q=2