Let y=−3x2(sin2x3)cos(cos2(x3))
Let u=−3x2
∴dudx=−6x
let v=sin(2x3)
dvdx=cos(2x3)(6x2)
dvdx=(6x2)cos(2x3)
Let w=cos(cos2(x3))
dwdx=−sin(cos2(x3))ddx(cos2(x3))
=2sin(cos2(x3))cos(x3)sin(x3)(3x2)
dwdx=(3x2)sin(2x3)sin(cos2(x3))
y=uvw
Differentiate on both sides w.r.t x
dydx=dudx×v×w+u×dvdx×w+u×v×dwdx
dydx=(−6x)(sin(2x3))cos[cos2(x3)]+(−3x2)(6x2)cos(2x3)cos[cos2(x3)]+(−3x2)(sin(2x3))(3x2)(sin(2x3))×
sin[cos2(x3)]
∴dydx=(−3x2)[2sin2(x3)cos[cos2(x3)]+6x3cos(2x3)cos[cos2(x3)]+3x3sin2(2x3)sin[cos2(x3)]]