Differentiate eax cos (bx+c).
Using the product rule, we have
ddx[eax cos (bx+c).]
eax.ddx[cos (bx+c)]+cos (bx+c).ddx(eax)
=eax[−sin (bx+c)].ddx.(bx+c)+cos(bx+c).eax.ddx(ax) [using the chain rule ]
=beax sin (bx+c)+aax cos‘(bx+c)
=eax[a cos(bx+c)−b sin (bx+c).]