wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate each of the following from first principles:

(i) ex

(ii) e3x

(iii) eax + b

(iv) x ex

(v) − x

(vi) (−x)−1

(vii) sin (x + 1)

(viii) cosx-π8

(ix) x sin x

(x) x cos x

(xi) sin (2x − 3)

Open in App
Solution

i ddxf(x)=limh0fx+h-fxhddxex=limh0e-(x+h)-e-xh =limh0e-xe-h-e-xh =limh0e-xe-h-1h =-e-xlimh0e-h-1-h =-e-x1 =-e-x

ii ddxf(x)=limh0fx+h-fxhddxe3x=limh0e3(x+h)-e3xh =limh0e3xe3h-e3xh =limh0e3xe3h-13h =3 e3xlimh0e3h-13h =3 e3x1 =3 e3x

iii ddxf(x)=limh0fx+h-fxhddxeax+b=limh0ea(x+h)+b-eax+bh =limh0eax+beah-eax+bh =limh0eax+beah-1h =a eax+blimh0eah-1ah =a eax+b1 =a eax+b

iv ddxf(x)=limh0fx+h-fxhddxx ex=limh0(x+h )e(x+h)-x exh =limh0(x+h) exeh-x exh =limh0x exeh+hexeh-x exh =limh0x exeh-x exh+limh0h exehh =limh0x exeh-1h+limh0exeh =xex1+exe0 =xex+ex

v ddxfx=limh0fx+h-fxhddx-x=limh0-x+h--xh =limh0-x-h+xh =limh0-hh =limh0-1 =-1

vi -x-1=1-x ddxfx=limh0fx+h-fxhddx1-x =limh01-x+h-1-x h =limh0-1x+h+1xh =limh0-x+x+hh x x+h =limh0hh x x+h =limh01 x x+h =1x.x =1x2

vii ddxfx=limh0fx+h-fxhddxsin x+1=limh0sin x+h+1-sin x+1 hWe know:sin C-sin D=2 cos C+D2 sin C-D2 =limh02 cos x+h+1+x+12 sin x+h+1-x-12h =limh02 cos 2x+h+22 sin h2 h =2limh0 cos 2x+h+22 limh0 sin h2 h2×12 =2 cos x+1 ×12 =cos x+1

viii ddxfx=limh0fx+h-fxhddxcos x-π8=limh0cos x+h-π8-cos x-π8hWe know:cos C-cos D=-2 sin C+D2 sin C-D2 =limh0-2 sin x+h-π8+x-π82 sin x+h-π8-x+π82h =limh0-2 sin 2x+h-π42 sin h2 h =-2limh0 sin 2x+h-π42 limh0 sin h2 h2×12 =-2 sin x-π8 ×12 =-sin x-π8

ix ddxf(x)=limh0fx+h-fxh =limh0 x+h sinx+h - x sin xh =limh0x+hsin x cos h + cos x sin h- x sin xh =limh0 x sin x cos h + x cos x sin h +h sin x cos h + h cos x sin hh =limh0 x sin x cos h - x sin x + x cos x sin h +h sin x cos h + h cos x sin h - x sin x h =x sin x limh0 cos h -1h+x cos x limh0 sin h h+sin xlimh0 cos h+cos xlimh0 sin h =x sin x limh0 -2 sin2 h2h24×h4+ x cos x 1+ sin x 1+ cos x 0 = x sin x × -h2 + x cos x 1+ sin x 1+ cos x 0 =-2x sin x 120+ x cos x + sin x = x cos x + sin x

x ddxf(x)=limh0fx+h-fxh =limh0 x+h cos x+h - x cos xh =limh0x+hcos x cos h-sin x sin h- x cos xh =limh0 x cos x cos h - x sin x sin h+h cos x cos h - h sin x sin h- x cos xh =limh0 x cos x cos h - x cos x - x sin x sin h+h cos x cos h - h sin x sin hh =x cos x limh0 cos h -1h-x sin x limh0 sin h h+cos xlimh0 cos h+sin xlimh0 sin h =x cos x limh0 -2 sin2 h2h24×h4-x sin x 1+cos x 1+ sin x 0 =xcosx lim h0-h2-x sin x 1+cos x 1+ sin x 0 =-x cos x 0-x sin x+ cos x = -x sin x+ cos x

xi ddxf(x)=limh0fx+h-fxh =limh0 sin 2x+2h-3-sin 2x-3hWe know:sin C-sin D=2 cos C+D2 sinC-D2 =limh0 2 cos 2x+2h-3+2x-32 sin 2x+2h-3+2x-32 h =limh0 2 cos 4x+2h-62 sin h h =limh0 2 cos 4x+2h-62 limh0 sin hh =2 cos 4x-62 1 = 2 cos 2x-3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration as Anti-Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon