wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate each of the following from first principles:

(i) sin 2x

(ii) sin xx

(iii) cos xx

(iv) x2 sin x

(v) sin (3x+1)

(vi) sin x + cos x

(vii) x2 ex

(viii) ex2+1

(ix) e2x

(x) eax+b

(xi) ax

(x) 3x2

Open in App
Solution

i ddxf(x)=limh0fx+h-fxh =limh0 sin 2x+2h-sin 2xh×sin 2x+2h+sin 2xsin 2x+2h+sin 2x =limh0sin 2x+2h- sin 2xh sin 2x+2h+sin 2xWe have:sin C-sin D= 2 cos C+D2 sin C-D2 =limh02 cos 2x+2h+2x2 sin 2x+2h-2x2h sin 2x+2h+sin 2x =limh02 cos 2x+h sin hh sin 2x+2h+sin 2x =limh0 2 cos 2x+h limh0 sin h hlimh01sin 2x+2h+sin 2x = 2 cos 2x 1 1sin 2x+sin 2x =2 cos 2x2sin 2x = cos 2xsin 2x

ii ddxf(x)=limh0fx+h-fxh =limh0 sin x+hx+h-sin xxh =limh0 x sin x+h- x+h sin x h x x+h =limh0 x sin x cos h + cos x sin h- x sin x - h sin xh x x+h =limh0 x sin x cos h +x cos x sin h- x sin x - h sin xh x x+h =limh0 x sin x cos h- x sin x +x cos x sin h - h sin xh x x+h =x sin xlimh0cos h -1h+x cos x x limh0 sin hhlimh0 1x+h-sin xxlimh01x+h =x sin x limh0 -2 sin2 h2h+x cos x x limh0 sin hhlimh0 1x+h-sin xxlimh01x+h =x sin x limh0 -2 sin2 h2h24×h4+x cos x x limh0 sin hhlimh0 1x+h-sin xxlimh01x+h =-x sin x ×limh0h2+x cos x x limh0 sin hhlimh0 1x+h-sin xxlimh01x+h =-x sin x 12 0+cos xx-sin xx2 =cos xx-sin xx2 =x cos x-sin xx2

iii ddxf(x)=limh0fx+h-fxh =limh0 cos x+hx+h-cos xxh =limh0 x cos x+h- x+h cos x h x x+h =limh0 x cos x cos h - sin x sin h- x cos x - h cos xh x x+h =limh0 x cos x cos h -x sin x sin h- x cos x - h cos xh x x+h =limh0 x cos x cos h - x cos x-x sin x sin h - h cos xh x x+h =xcos xlimh0cos h -1h-xsin x x limh0 sin hhlimh0 1x+h-cos xxlimh01x+h =x cos x limh0 -2 sin2 h2h24×h4-xsin x x limh0 sin hhlimh0 1x+h-cos xxlimh01x+h limh0 sin2 h2h24=limh0sin h2h2×limh0sin h2h2=1×1, i.e. 1 = -x cosxlimh0 h2-xsin x x limh0 sin hhlimh0 1x+h-cos xxlimh01x+h =-x cos x ×0-sin x 11x-cos x x1x =0-sin xx-cos xx2 =-sin xx-cos xx2 =-x sin x-cos xx2

iv ddxf(x)=limh0fx+h-fxh =limh0 x+h2 sin x+h-x2 sin xh =limh0 x2+h2+2xhsin x cos h + cos x sin h-x2 sin xh =limh0 x2 sin x cos h + x2 cos x sin h + h2 sin x cos h +h2 cos x sin h+2xh sin x cos h +2xh cos x sin h-x2 sin xh =limh0x2 sin x cos h-x2 sin x + x2 cos x sin h + h2 sin x cos h +h2 cos x sin h+2xh sin x cos h +2xh cos x sin hh =x2 sin xlimh0cos h -1h+x2 cos xlimh0sin hh+sin x limh0 h cos h+ cos x limh0 h sin h +2x sin xlimh0 cosh +2x cos x limh0 sin h =x2 sin x limh0 -2 sin2 h2h24×h4+x2 cos xlimh0sin hh+sin x limh0 h cos h+ cos x limh0 h sin h +2x sin xlimh0 cosh +2x cos x limh0 sin h limh0 sin2 h2h24=limh0sin h2h2×limh0sin h2h2=1×1, i.e. 1 =-x2sinx× limh0 h2+x2 cos xlimh0sin hh+sin x limh0 h cos h+ cos x limh0 h sin h +2x sin xlimh0 cosh +2x cos x limh0 sin h =-x2 sin x ×0+x2 cos x 1+ sin x 0+ cos x 0+ 2x sin x 1+2x cos x 0 =0+x2 cos x+ 2x sin x =0+x2 cos x+ 2x sin x =x2 cos x+ 2x sin x

v ddxf(x)=limh0fx+h-fxh = limh0 sin 3x+h+1-sin 3x+1h =limh0 sin 3x+3h+1-sin 3x+1h×sin 3x+3h+1+sin 3x+1sin 3x+3h+1+sin 3x+1 =limh0sin 3x+3h+1-sin 3x+1h sin 3x+3h+1+sin 3x+1We have: sin C-sin D= 2 cos C+D2 sin C-D2 =limh02 cos 3x+3h+1+3x+12 sin 3x+3h+1-3x-12h sin 3x+3h+1+sin 3x+1 =limh02 cos 6x+3h+22 sin 3h2h sin 3x+3h+1+sin 3x+1 =limh0 2 cos 6x+3h+22 limh0 sin 3h 2h×32×32×limh01sin 3x+3h+1+sin 3x+1 = 2 cos 3x+1 ×32 ×1sin 3x+1+sin 3x+1 =3 cos 3x+12sin 3x+1

vi ddxf(x)=limh0fx+h-fxh =limh0 sin x+h+cos x+h-sin x-cos xh =limh0sin x+h -sin xh+limh0 cos x+h-cos xhWe have: sin C-sin D= 2 cos C+D2 sin C-D2And, cos C-cos D=-2 sin C+D2 sin C-D2 =limh0 2 cos 2x+h2 sin h2h+limh0 -2 sin 2x+h2 sin h2h =2 limh0 cos 2x+h2 limh0 sin h2h2×12 -2 limh0 sin 2x+h2 limh0 sin h2h2×12 =2 cos x× 12-2 sin x ×12 =cos x - sin x

vii ddxf(x)=limh0fx+h-fxhddxx2 ex=limh0(x+h)2e(x+h)-x2exh =limh0(x2+2xh+h2)exeh-x2exh =limh0x2exeh+2xhexeh+h2exeh-x2exh =limh0x2exeh-x2exh+limh02 x h exehh+limh0h2exehh =limh0x2exeh-1h+limh02 x exeh+limh0 h exeh =x2ex1+2xex1+0 =x2ex+2xex =x2+2x ex

viii ddxf(x)=limh0fx+h-fxhddxex2+1=limh0e(x+h)2+1-ex2+1h =limh0ex2+h2+2xh+1-ex2+1h =limh0ex2+1eh2+2xh-ex2+1h =limh0ex2+1ehh+2x-1h×h+2xh+2x =ex2+1limh0 ehh+2x-1hh+2x limh0 h+2x =ex2+11 2x =2x ex2+1

ix ddxf(x)=limh0fx+h-fxhddxe2x=limh0e2(x+h)-e2xh =2 limh0e2x+2h-e2x2x+2h-2x =2 limh0 e2xe2x+2h-2x-12x+2h2-2x2 =2 e2x limh0 e2x+2h-2x-12x+2h-2x2x+2h+2x =2 e2x limh0 e2x+2h-2x-12x+2h-2x limh012x+2h+2x =2 e2x 1122x =e2x2x

x ddxf(x)=limh0fx+h-fxhddxeax+b=limh0eax+ah+b-eax+bh =a limh0eax+ah+b-eax+bax+ah+b-ax+b =a limh0eax+beax+ah+b-ax+b-1ax+ah+b2-ax+b2 =a eax+b limh0 eax+ah+b-ax+b-1ax+ah+b-ax+bax+ah+b+ax+b =a eax+b limh0 eax+ah+b-ax+b-1ax+ah+b-ax+b limh01ax+ah+b+ax+b =a eax+b 112ax+b =a eax+b2ax+b

xi ddxf(x)=limh0fx+h-fxhddxax=limh0ax+h-axh =limh0axax+h-x-1x+h-x =axlimh0ax+h-x-1x+h2-x2 =axlimh0ax+h-x-1x+h-xx+h+x =axlimh0ax+h-x-1x+h-x limh01x+h+x =ax loge a 12x =12xax loge a

xii ddxf(x)=limh0fx+h-fxhddx3x2=limh03x+h2-3x2h =limh0 3x2+2xh+h2-3x2h =limh0 3x2 3x2+2xh+h2-x2-1h×h+2xh+2x =3x2 limh0 3hh+2x-1hh+2xlimh0h+2x =3x2 log 3 2x =2x 3x2 log 3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon