Differentiate each of the following from first principles :
(i) tan2x
(ii) tan(2x+1)
(iii) tan 2x
(iiv) √tan x
(i) We have,
f(x)=tan2 x
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0tan2(x+h)−tan2xh
=limh→0{tan(x+h)+tan x}{tan(x+h)−tan x}h
[∵ tan2A−tan2B=(tan A+tan B)(tan A−tan B)]
=limh→0sin(x+h+x)cos(x+h)cos x×sin(x+h−x)cos(x+h)cos xh
limh→0sin(2x+h)h.cos(x+h)cos x×sin hcos(x+h)cos x
=limh→0sin hh×sin 2xcos2x.cos2(x+h)
=limh→0sin 2xcos2x.cos2x [∵ limh→0sin hh=1]
=limh→02sin x.cos xcos2x×1cos2x [sin 2x=2 sin x cos x]
=2 tan x.sec2x
(ii) We have,
f(x)=tan(2x+1)
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0tan 2(x+h)+tan(2x+1)h'
=limh→0sin(2x+2h+1−2x−1)h.cos{2(x+h)+1}cos(2x+1) [∵ tan A−tan B=sin(A−B)cos A.cos B]
=limh→02.sin 2h2h.cos{2x+2h+1}cos(2x+1)
Multiplying both, Numerator and Denominator by 2.
∴ limh→0(sin 2h2)×1cos{2x+2h+1}cos(2x+1)
=2cos2(2x+1) [∵ sin 2hh=1]
=2 sec2(2x+1) [∵ sec2x=1cos2x]
=2 sec2(2x+1)
(iii) We have,
f(x)=tan 2x
∴ f′(x)=limh→0f(x+h)−f(x)h
=limh→0tan 2(x+h)−tan 2xh=limh→0sin(2x+2h−2x)h.cos(2x+2h)cos 2x [∵ tan A−tan B=sin(A−B)cos A.cos B]
=limh→0sin 2hh.cos(2x+2h)cos 2x
=limh→0(sin 2h2h)×1×2cos(2h+2x)cos 2x
=2cos 2x.cos 2x [∵ limh→0sin hh=1]
=2 sec22x [∵ 1cos2x=sec2x]
(iv) We have,
f(x)=√tan x
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0√tan(x+h)−√tan xh
Multplying Numerator and Denominator by √tan(x+h)+√tan x
=limh→0tan(x+h)−tan x(√tan(x+h)+√tan x)=limh→0sin(x+h−x)h.cos(x+h)cos x(√tan(x+h)+√tan x)
=limh→0sinhh×1cos(x+h)cos x(√tan(x+h)+√tan x)
=limh→01cos2.2√tan x [∵ limh→0sin hh=1]
=12sec2x√tan x [∵ 1cos2x=sec2x]