wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate each of the following from first principles :

(i) tan2x

(ii) tan(2x+1)

(iii) tan 2x

(iiv) tan x

Open in App
Solution

(i) We have,

f(x)=tan2 x

f(x)=limh0f(x+h)f(x)h

=limh0tan2(x+h)tan2xh

=limh0{tan(x+h)+tan x}{tan(x+h)tan x}h

[ tan2Atan2B=(tan A+tan B)(tan Atan B)]

=limh0sin(x+h+x)cos(x+h)cos x×sin(x+hx)cos(x+h)cos xh

limh0sin(2x+h)h.cos(x+h)cos x×sin hcos(x+h)cos x

=limh0sin hh×sin 2xcos2x.cos2(x+h)

=limh0sin 2xcos2x.cos2x [ limh0sin hh=1]

=limh02sin x.cos xcos2x×1cos2x [sin 2x=2 sin x cos x]

=2 tan x.sec2x

(ii) We have,

f(x)=tan(2x+1)

f(x)=limh0f(x+h)f(x)h

=limh0tan 2(x+h)+tan(2x+1)h'

=limh0sin(2x+2h+12x1)h.cos{2(x+h)+1}cos(2x+1) [ tan Atan B=sin(AB)cos A.cos B]

=limh02.sin 2h2h.cos{2x+2h+1}cos(2x+1)

Multiplying both, Numerator and Denominator by 2.

limh0(sin 2h2)×1cos{2x+2h+1}cos(2x+1)

=2cos2(2x+1) [ sin 2hh=1]

=2 sec2(2x+1) [ sec2x=1cos2x]

=2 sec2(2x+1)

(iii) We have,

f(x)=tan 2x

f(x)=limh0f(x+h)f(x)h

=limh0tan 2(x+h)tan 2xh=limh0sin(2x+2h2x)h.cos(2x+2h)cos 2x [ tan Atan B=sin(AB)cos A.cos B]

=limh0sin 2hh.cos(2x+2h)cos 2x

=limh0(sin 2h2h)×1×2cos(2h+2x)cos 2x

=2cos 2x.cos 2x [ limh0sin hh=1]

=2 sec22x [ 1cos2x=sec2x]

(iv) We have,

f(x)=tan x

f(x)=limh0f(x+h)f(x)h

=limh0tan(x+h)tan xh

Multplying Numerator and Denominator by tan(x+h)+tan x

=limh0tan(x+h)tan x(tan(x+h)+tan x)=limh0sin(x+hx)h.cos(x+h)cos x(tan(x+h)+tan x)

=limh0sinhh×1cos(x+h)cos x(tan(x+h)+tan x)

=limh01cos2.2tan x [ limh0sin hh=1]

=12sec2xtan x [ 1cos2x=sec2x]


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon