wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate each of the following from first principles:
(i) -x
(ii) (x)1
(iii) sin (x+1)
(iv) cos(xπ8)

Open in App
Solution

(i) Let f(x) =-x

We have,

f(x)=limh0f(x+h)f(x)h

=limh0(x+h)(x)h (By first principle)

=limh0xh+xh [f(x)=x]

f(x)=limh0hh=1

(ii) Let f(x)=(x)1

f(x)=1x

We have, f(x)=limh0f(x+h)f(x)h (By first principle)

f(x)=limh01x+h+1xh (f(x)=1x)

f(x)limh01x1x+hh=limh0x+hxx(x+h)h

=limh0hx(x+h)h=1x(x+0)=1x2

(iii) f(x)= sin(x+1)
We have, f(x)=limh0f(x+h)f(x)h (By first principle)

f(x)=limh0sin(x+h+1)sin(x+1)h [f(x)=sin(x+1)]

f(x)=limh020cosx+h+1+x+12sinx+h+1x12h [sin Csin D=2cos C+D2 sin CD2]

limh02cos2x+h+22sinh22×h2=cos2x+0+22×1 (limh0sin h2h2=1)

f(x)=cos(x+1)

(iv) Let f(x)=cos(xπ8)

We have, f(x)=limh0f(x+h)f(x)h (By first principle)

f(x)=limh0cos(x+hπ8)cos(xπ8)h (f(x)=cos(xπ8))

limh02sinx+hπ8+xπ82sinx+hπ8x+π82h [cos Ccos D=2sinC+D2sinCD2]

=limh02sin2x2(π8+h)sinh222×h2 = sin2x2(π8)+02×1 (limh0sinh2h2=1)

=sin2(xπ8)2

f(x)=sin(xπ8)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon