(i) Let f(x) =-x
We have,
f′(x)=limh→0f(x+h)−f(x)h
=limh→0−(x+h)−(−x)h (By first principle)
=limh→0−x−h+xh [∵f(x)=−x]
⇒f′(x)=limh→0−hh=−1
(ii) Let f(x)=(−x)−1
⇒f(x)=−1x
We have, f′(x)=limh→0f(x+h)−f(x)h (By first principle)
⇒f′(x)=limh→0−1x+h+1xh (∵f(x)=1x)
⇒f′(x)limh→01x−1x+hh=limh→0x+h−xx(x+h)h
=limh→0hx(x+h)h=1x(x+0)=1x2
(iii) f(x)= sin(x+1)
We have, f′(x)=limh→0f(x+h)−f(x)h (By first principle)
⇒f′(x)=limh→0sin(x+h+1)−sin(x+1)h [∵f(x)=sin(x+1)]
⇒f′(x)=limh→020cosx+h+1+x+12sinx+h+1−x−12h [∵sin C−sin D=2cos C+D2 sin C−D2]
limh→02cos2x+h+22sinh22×h2=cos2x+0+22×1 (∵limh→0sin h2h2=1)
⇒f′(x)=cos(x+1)
(iv) Let f(x)=cos(x−π8)
We have, f′(x)=limh→0f(x+h)−f(x)h (By first principle)
⇒f′(x)=limh→0cos(x+h−π8)−cos(x−π8)h (∵f(x)=cos(x−π8))
⇒limh→0−2sinx+h−π8+x−π82sinx+h−π8−x+π82h [∵cos C−cos D=−2sinC+D2sinC−D2]
=limh→0−2sin2x−2(π8+h)sinh222×h2 = −sin2x−2(π8)+02×1 (∵limh→0sinh2h2=1)
=−sin2(x−π8)2
⇒f′(x)=−sin(x−π8)