Let u=3x2+2,u=3x2+2
Then, u′=6x,v′=6x
Using the product rule
ddx(uv)=uv′+vu′
ddx[(3x2+2)(3x2+2)]=(3x2)(6x)+(3x2+2)(6x)
ddx[(3x2)(3x2+2)]=18x3+12x+18x3+12x
ddx[(3x2+2)(3x2+2)]=36x3+24x
2nd method
ddx[(3x2+2)2]=ddx(9x4+12x2+4)=36x3+24x
Using both methods, we get the same answer.
(ii) (x+2)(x+3)
Let u=x+2, v= x+3
Then, u'= 1, v'= 1
Using the product rule
ddx(uv)=uv′+vu′
ddx[(x+2)(x+3)]
=(x+2)1+(x+3)1
=x+2+x+3
=2x+5
2nd method
ddx[(x+2)(x+3)]=ddx[x2+5x+6]
=2x+5
Using both the methods, we get the same answer.
(iii)(3sec x−4 cosec x)(−2sin x+5cos x) Product rule (1st method)
Let u=3sec x−4cosec x, v=−2sin x+5cos x
Then u′=3sec x tan x+4 cosec x cot x
v′=−2 cos x−5 sin x
Using the product rule
ddx(uv)=uv′+vu′
ddx[(3sec x−4cosec x)(−2 sin x+5 cos x)=(3 sec x−4 cosec 4)(−2 cos x−5 sin x)+(−2 sin x+5 cos x)(3 secx tan x+4 secx cot x)]
=−6+15tan x+8 cot x+206tan2x−8cot x−15 tan x+20cot2x
=−6+20−6(sec2x−1)+2O(cosec2x−1)
=−6+20−6sec2x+6+20cosec2x−20
=−6sec2x+20cosec2x
2nd method
=ddx[(3sec x−4cosec x)(−2sin x+5cos x)]
=ddx(−6sec x sin x+15sec x cos x+8cosec x sin x−20cosec x cos x)
=ddx(−6sin xcos x+15cos xcos x+8sin xsin x−20cos xsin x)
=ddx(−6tan x−20cot x+23)
=−6sec2x+20cosec2x
Using both the methods, we get the same answer.